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Microorganisms have the ability to move towards locations of high concentra-
tions in nutrients for bacteria such as E. coli and high illumination for microalgae
such as Chlamydomonas. These behaviors, chemotaxis, and phototaxis, rely on
fine biochemical dynamics and may be considered as simple models of purposeful
behavior. Modeling those is thus crucial for unveiling minimal agency and can be
useful for the design of microscopic robotic systems. The biochemical cascades
implementing taxis may be modeled in detail, as was done for chemotaxis in [8],
or we can rely on a phenomenological model of the associated behavior, see for
example [5] for phototaxis. Each involves distinct modeling paradigms, such as
chemical Bayesian machines on one side [1] and Active Inference descriptions
on the other [9, 10].

In particular, D. Colliaux introduced in [1] a Bayesian interpretation of the
molecular cascades that underlie chemotaxis and phototaxis. It shows that any
Bayesian inference on discrete variables can be implemented through a generic
biochemical cascade and that any generic biochemical cascade can be interpreted
as Bayesian inference. A simple cascade was designed to implement phototaxis.
On the other hand, Active Inference also known as the Free Energy Principle
[3] proposes an algorithm for modeling agents with ‘adaptive behaviors’ which
is widely used in applications and celebrated for it [2]. In this setting, agents
are presumed to possess an internal model of their environment, which they use
to maintain beliefs that evolve over time based on observations providing in-
sight into the state of their environment; such assumption is sometimes coined
the Bayesian Brain Hypothesis. Active Inference is not the only framework
that allows for modeling ‘adaptive behaviors’. For instance, stochastic opti-
mal control models agents with either complete (Markov Decision Process) or
incomplete (Partially Observable Markov Decision Process) information about
their environment, with the objective of maximizing cumulative rewards over
time. Similarly, reinforcement learning pursues this objective, particularly when
the reward function itself is stochastic. It could be argued that Active Inference
represents a Bayesian approach to stochastic optimal control [4]. A. Tschantz et
al. [9] proposed a generative model of active inference for chemotaxis. Theoret-
ical predictions on the behavior of agents governed by active inference remain
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an open problem; it is a problem on which G. Sergeant-Perthuis worked in the
context of exploratory behaviors [6, 7, 10].

The internship will encompass both computational and theoretical aspects.
On the computational side, the objective is to identify metrics that enable the
comparison of each model’s capacity to generate adaptive behaviors. Through
these comparisons, we aim to extract key modeling components that can be
applied to address the more complex and less understood nature of accurate
generative models of phototaxis. On the theoretical side, this project will serve
as a platform to develop tools to assess the adequacy of each model in simulating
adaptive behaviors a priori, and to explore the boundaries within which these
models can accurately replicate complex behaviors.

The internship will be jointly supervised by Grégoire Sergeant-Perthuis and
Elias Tsigaridas at Sorbonne Université, and by David Colliaux at Sony CSL.
Both laboratories are located in the 5th arrondissement of Paris. The duration
of the internship is 6 months, and the remuneration will be in line with the
standard rates for internships.
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