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Statistical mechanics: motivation and problems
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Statistical mechanics: motivation

• What for? ⇝ modelling interaction between random variables, e.g.
X = X1...XN ∈ {−1,1}.

• How? ⇝ Energy-based modeling
- energy function (Hamiltonian), e.g.

H = X1 · X2 + X2 · X3 + X3 · X4 . . .

- Probability distribution: Boltzmann distribution

pX ∝ e−βH ∝ eβX1·X2 · eβX2·X3 · eβX3·X4 . . . (Markov chain)

• Relation to computer science [MM09], (key words):
- Markov chain, Hidden Markov model (HMM)
- Graphical models, factor graphs . . .
- Inference (maximum likelihood), Bayesian inference
⇝ machine learning (̸= deep learning)
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Statistical mechanics: problems of interest

When there are a (countable) infinity of random variables
(X1, . . .Xn, . . . ) then:

• one Hamiltonian H → how to make sense of pX ∝ e−βH

⇝ several possible distribution p (Dobrushin-Lanford-Ruelle condition)
→ Phases, pure phases, e.g “solid, gaz, liquid”

• Characterizing the phases is a hard problem
• “Manipulating” (transforming) the phases is difficult
• For translation invariant potential:

→ Correspondance: phases ↔ tangent of a convex functional
(“Helmholtz free energy”) at H.↱
relates to variational principle
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Statistical mechanics: formal definitions
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Setting

• I index of (finite) random variables: (Xi ∈ Ei , i ∈ I)
• Global state space Ω =

∏
i∈I Ei denoted as E with σ−algebra E ,

• P(E) space of measures

• a ⊆ I finite subset of I, Pf (I) the set of finite subsets
• Xa ∈ Ea =

∏
i∈a Ei or (E ,Ea) when seen in (E ,E )

• for b ⊆ a, iab : Ea → Eb in Mes(Ea,Eb)
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• Statistical system: collection of border conditions

• Probability kernel p : Ea → E ,
• p ∈ Kern(Ea,E)

• ∀ωa ∈ Ea, pωa ∈ P(E)

• For A ∈ E , p(A|ωa) “∼=” E[A|Ea]
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Proper kernel

Definition: Proper Kernel [Geo11]
Let E1 ⊆ E be two σ-algebras of a set E , a kernel
p ∈ Kern ((E ,E1), (E ,E )) is proper if and only if, for any A ∈ E , any
B ∈ E1 and any ω ∈ E ,

p(A ∩ B|ω) = p(A|ω)1[ω ∈ B]

For f a E1−measurable function,

p(f |ω) =
∫

f (x)p(dx |ω) = f (ω)

Let i : (E ,E ) → (E ,E1) the set identity map. p : (E ,E1) → (E ,E )
proper if and only if, i ◦ p = id.
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Tower rule

• Tower rule: for A ∈ E ,

E
[
E[A|Fa]|Fb

]
= E[A|Fb]

• For ω ∈ E ,

pa ◦ pb(A|ωb) =

∫
p(A|xωa)p(dx |ωb)

pb

(
pa(A|.)|ωb

)
= pb(A|ωb)
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Specification

Definition: Specification [Geo11]
A specification with parameter set I and state spaces (E ,E ) is a
collection (γa,a ∈ Pf (I)) of proper kernels such that for any a ∈ Pf (I),
γa ∈ Kern ((E ,Ea), (E ,E )) and which satisfies that for any a ⊆ b, i.e
b ⊆ a, any A ∈ E and ω ∈ E ,

γaγb(A|ω) = γb(A|ω)
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Gibbs measures

Definition: Gibbs measures
Let γ be a specification with state space E , the set of probability
measures,

G (γ) = {µ ∈ P(E) : Eµ(A|Ea) = γa(A|.) µ a.s.}

is called the set of Gibbs measures of γ.
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Contribution: Proposed categorical formulation

Problem:
• reference to ‘global’ E ↔ difficult to “transform phases”, in fact:

→ Hamiltonian don’t behave well with respect to maps E → E1
→ local operation on H (+ϕ) are not compositional for µ ∈ G (γ)

What we would like:
• “to build complex statistical systems from simple ones in a way that allows

controlling and computing the phases of the associated statistical systems from
the phases of the simpler one.”

• other motivation:
→ model statistical systems with incomplete/incompatible information on

variables + heterogeneity
(related to use of sheaves in data science [SP22, Cur13, BGC+22])
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From classical description to categorical description

Specification

E

EaEc

Eb

∗

ia

Presheaf

E

EaEc

Eb

∗

• The collection (ia,a ∈ P(I)) encodes the functor of observables
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Link with functors

Proposition (SP ‘21)

Let γ be a specification with the state space E. For any a,b ∈ Pf (I)
such that b ⊆ a, there is a unique Markov kernel F a

b : Ea → Eb such
that the following diagram commutes,

Ea E

Eb

γa

F a
b

γb (0.1)

i.e. such that γb ◦ F a
b = γa. Furthermore for any collection

a,b, c ∈ Pf (I) with a ⊆ b ⊆ c,

F b
c ◦ F a

b = F a
c (0.2)

Sergeant-Perthuis (LCQB) Categorical Stat. Mech. 15/4/24 SYCO 12 14 / 36



Categories of measurable spaces and probability
kernels

• Mes: Objects are measurable space, Morphisms are measurable
applications

• Kern: Objects are measurable spaces, Morphisms are probability
kernel
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Proposed categorical formulation: specifications

Definition (Generalized Specification, A -Specifications)
Let A be a poset, a generalized specification over A , or simply
A -specification, is a couple (G,F ) of a presheaf and a functor where
G : A op → Mes and F : A → Kern are such that for any a,b ∈ A with
b ≤ a,

Ga
bF b

a = id (0.3)
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Specification

E

EaEc

Eb

∗

Presheaf

E

EaEc

Eb

∗

Gb
c

F c
b

Gb
c F c

b = id
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Proposed categorical formulation: Gibbs measures of
a specification

Definition 8.3.7: Gibbs measures for specifications
Let γ = (G,F ) be a specification over A , we shall call the Gibbs
measures of γ the sections of F ,

Gg(γ) = {Pa ∈ P(F (a)),a ∈ A | ∀b ≤ a,F b
a Pb = Pa}
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Specification

E

EaEc

Eb

∗

Presheaf

E

EaEc

Eb

∗

Gb
c

F c
b

Pc Pa
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Use homological algebra to compute phases.

• Phases are invariants: H0

• Use resolutions to compute H0.
• Projective and injective objects characterized in previous work

(next slides)
=⇒ Projectives extend independent random variables

Corollary 3.2 [SP20] (necessary condition harder)
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Projective presheaves

Definition (Projective presheaf)
F : A op → Vect is projective if there is a collection Sa,a ∈ A such
that,

F (a) ∼=
⊕
c≤a

Sc (0.4)

and,

F a
b
∼= pra

b :
⊕
c≤a

Sc →
⊕
c≤b

Sc (0.5)

→ Characterized in [SP20]: “F a
b ◦ F a

c = F a
b∧c”
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Projective presheaves: example

• V := R3, V1 := ⟨e0,e1⟩, V2 := ⟨e0,e2⟩, V3 := ⟨e0⟩
• Projections: orthogonal with respect to scalar product
• Collection of projections defines a projective presheaf

• Change scalar product⇝ not projective anymore.
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Projective specifications

• L∞(E), the set of bounded, real-valued, measurable functions
over E

• L∞: presheaf from Mes and Kern to the category of vector spaces
Vect

• Consider L∞ ◦ F : A op → Vect

Definition (Projective A -specifications)
An A -specification (G,F ) is called projective when L∞ ◦ F is a
projective presheaf (in Vect).
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Phases of projective presheaves

• poset A , equivalence relation by symmetrizing the order:

∀a,b ∈ A , a ∼ b ⇐⇒ a ≤ b or b ≤ a (0.6)

• equivalence classes are connected components
• denote C (a) the connected component of a ∈ A

• if each connected component has a minimum element, denote
C∗(A ) the set of these minimas. If not C∗(A ) := ∅
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Phases of projective presheaves

Theorem (SP ‘21)

Let γ = (G,F ) be a projective A -specification. If at least one of the
connected components of A does not have a minimum element, i.e.
when,

C∗(A ) = ∅ (0.7)

then,

Gg(γ) = ∅ (0.8)

if not,
Gg(γ) =

∏
a∈C∗(A )

P(γ(a)) (0.9)
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Characterizing extreme Gibbs measures of A -specifications
↱

towards a 0 − 1 law for extreme Gibbs measures of A -specifications
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Classical setting

For simplicity of presentation: I = N,
• E =

∏
i∈N Ei

• E≥k , σ-algebra generated by the cylinders: i−1
≥k (A) where

A ⊆
∏

n≥k En.
• tail σ-algebra: E∞ :=

⋂
k∈N E≥k .

• Set of Gibbs measures G (γ) is convex.
From [Geo11]):
→ Gibbs measures are fully characterized by their restriction to the

tail σ-algebra E∞.
→ Extreme Gibbs measures, µ ∈ ext Gg(γ), are ‘trivial’ on E∞, i.e. for

any A ∈ E∞,
µ(A) = 0 or 1
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Assumptions

• Recall γ = (G,F ), G : A op → Mes, F : A → Kern
• Assumptions: G(a) are finite (A does not need to be finite) and a

“positivity condition” on F .

↱ Assumption (probably) not required for weaker version of 0 − 1 law.
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Tail σ-algebra for A -specifications

Definition (Tail σ-algebra for A -specifications)

Let γ = (G,F ) be a A -specification. Pose σ(G)b
aAb := Ga

b
−1Ab,for

b ≤ a. The tail σ-algebra of A -specification is defined as:

limσ(G) := {(Aa ∈ σ(G(a)),a ∈ A )|∀a,b ∈ A , Aa = Ga
b
−1Ab}
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0 − 1 law for A -specifications

Theorem (SP ’24, Section 7 [SP24])
Let γ = (G,F ) be a specification, let G(a) be finite sets for any a ∈ A ,
let F > 0. Gg(γ) is a convex set. Each µ ∈ Gg(γ) is uniquely
determined by it’s restriction to limσ(G). Furthermore µ is extreme in
Gg(γ) if and only if for any A ∈ limσ(G), ∀a ∈ A , µa(Aa) = 0 or 1.
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→ Echoes with 0 − 1 laws in a categorical setting for i.i.d sequences
and Markov chains [FGP21, MP23].
↱

Full relation to be explored in future work.
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Toward an entropy and variational principle for A -specifications
⇝ Section 8 Paper arXiv:2403.16104

Sergeant-Perthuis (LCQB) Categorical Stat. Mech. 15/4/24 SYCO 12 32 / 36

https://arxiv.org/abs/2403.16104


Thank you for your attention

Thank you for your attention!
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