1 Feuille TD3 Exercice 1

 $\mathbf{Q}\mathbf{1}$

Montrons par récurrence que $P_n = \overline{A_1 \cup A_2 \cup ... \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}$ est vrai pour tout $n \ge 2$.

Inititalisation (Cas de base) : pour $n=2, \overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$; donc P_2 est vrai.

Cas d'induction : Montrons que si P_n est vrai alors P_{n+1} est vrai.

Supposons que P_n est vrai. On a que :

$$A_1 \cup A_2 \cup ... \cup A_n \cup A_{n+1} = A_{n+1} \cup (A_1 \cup A_2 \cup ... \cup A_n)$$

Posons $B = A_1 \cup A_2 \cup ... \cup A_n$. On sait que $\overline{A_{n+1} \cup B} = \overline{A_{n+1}} \cap \overline{B}$.

Or par hypothèse de récurrence, P_n est vrai donc,

$$\overline{B} = \overline{A}_1 \cap \overline{A}_2 \cap \dots \cap \overline{A}_n$$

Ainsi, $\overline{A_1 \cup A_2 \cup ... \cup A_n \cup A_{n+1}} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n} \cap \overline{A_{n+1}}$. Nous venons de montrer que P_{n+1} est vrai (en ayant supposé que P_n était vrai).

Donc, par récurrence, P_n est vrai pour tout $n \geq 2$.